
An Ariadne’s thread to the
identification and annotation of
noncoding RNAs in eukaryotes
Giulia Solda', Igor V. Makunin, Osman U. Sezerman, Alberto Corradin,Giorgio Corti and Alessandro Guffanti
Submitted: 5th December 2008; Received (in revised form): 12th March 2009

Abstract
Non-protein coding RNAs (ncRNAs) have emerged as a vast and heterogeneous portion of eukaryotic transcrip-
tomes. Several ncRNA families, either short (<200 nucleotides, nt) or long (>200nt), have been described and impli-
cated in a variety of biological processes, from translation to gene expression regulation and nuclear trafficking.
Most probably, other families are still to be discovered.Computational methods for ncRNA research require differ-
ent approaches from the ones normally used in the prediction of protein-coding genes. Indeed, primary sequence
alone is often insufficient to infer ncRNA functionality, whereas secondary structure and local conservation of por-
tions of the transcript could provide useful information for both the prediction and the functional annotation of
ncRNAs. Here we present an overview of computational methods and bioinformatics resources currently available
for studying ncRNA genes, introducing the common themes as well as the different approaches required for long
and short ncRNA identification and annotation.

Keywords: small and long noncoding RNA; gene prediction; genome annotation; bioinformatics analysis; regulatory RNA;
bioinformatics programming

INTRODUCTION TOTHE
NONCODING RNAWORLD
In the last decade, non-protein coding RNAs

(ncRNAs) have emerged as a diverse and vast por-

tion of mammalian transcriptome, accounting for the

majority of all annotated transcripts [1, 2]. Before

that, the number of known ncRNAs was restricted

to ‘housekeeping’ RNAs, such as ribosomal RNAs

(rRNA), transfer RNAs (tRNA) and spliceosomal

RNAs (snRNA), together with few regulatory

RNAs, such as H19 and Xist (X-Inactive Specific

Transcript) in mammals and the microRNA lin-4
in C.elegans [3–5]. Currently, thousands of short

ncRNAs have been identified, including
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microRNAs (miRNA), endogenous short interfering

RNAs (siRNA), PIWI-interacting RNAs (piRNA)

and small nucleolar RNAs (snoRNA) [6, 7].

Moreover, tens of thousands of long ncRNAs

(>200 nucleotides, nt) have been discovered using

full-length complementary DNA (cDNA) cloning

and genomic tiling arrays to comprehensively profile

plants and animals transcriptomes [8–12].

ncRNAs have been implicated in a variety of

regulatory processes, ranging from X chromosome

inactivation, genomic imprinting and chromatin

modification to transcriptional activation, transcrip-

tional interference, post-transcriptional gene silen-

cing and nuclear trafficking [13, 14]. Small RNA

functions are better defined, and the mechanisms

by which they exert their effects are, at least partially,

understood [7]. For instance, miRNAs are endogen-

ous 21–23 nt RNA molecules that act as post-tran-

scriptional regulators of gene expression by targeting

cognate messenger RNAs (mRNAs) for translational

repression/degradation, via the association with

Argonaute proteins [14]. On the contrary, it is still

largely unclear how long ncRNAs work. However,

it has become apparent that long ncRNAs can

act both in cis and in trans [15–19], and that some

function as precursors for short ncRNAs [20, 21].

Despite the recent progress in understanding

this heterogeneous and previously hidden layer of

regulatory transcripts, the majority of ncRNAs is

still uncharacterized, and doubts have been raised

as to how many of them are functional at all [22].

Certainly, unlike protein-coding genes where

sequence motifs are usually indicative of function,

ncRNA primary sequence information may be insuf-

ficient for predicting their function a priori [23].

Therefore, correct annotation of ncRNAs and dis-

crimination between protein-coding and noncoding

transcripts requires novel strategies and poses novel

challenges.

We present here an overview of current compu-

tational methods and bioinformatic resources for

the identification, annotation and characterization

of ncRNAs, focusing on regulatory ncRNAs.

Annotation of housekeeping or ‘classical’ ncRNAs

has been recently reviewed elsewhere [24]. After a

description of structural approaches, which can be

generally applied to ncRNA prediction and annota-

tion, separate sections are devoted to specific strate-

gies for long and short ncRNA annotation (as they

present different computational challenges), and

a final section collects the most relevant databases

and software for ncRNA research. This review

aims at providing a broad picture of the main

ncRNA analytical approaches, commenting some

selected methods and identifying the most problem-

atic issues.

STRUCTURALAPPROACHES FOR
ncRNA ANNOTATION
Reliable genome-wide ncRNA annotation is cur-

rently restricted to homologs of known structured

RNA families, which mainly includes housekeeping

RNAs (e.g. transfer, ribosomal and spliceosomal

RNAs) and small RNAs (mainly miRNAs).

The Rfam database (Table 1) is built from struc-

ture-annotated multiple sequence alignments, covar-

iance models (CMs) and family annotation for

noncoding RNAs, cis-regulatory and self-splicing

intron families [25]. Over a million of sequences

have been aligned to form over 1300 families (cur-

rent release 9.1, January 2009). This is a powerful

resource because functional ncRNAs often have a

secondary structure which is more conserved than

the simple nucleotide sequence. CMs used in Rfam
can efficiently model both the sequence and the

structure, leading to the predicted functional classifi-

cation of a ncRNA. The INFERNAL software

(which incorporates also a Blast search engine) is

at the core of the Rfam CMs build process and

search and can be downloaded from the Rfam site,

together with the target database. Searches with

known miRNA precursors from mirBase or tRNA

sequences, for example, invariably gave a clear-cut

result, with alignments and the secondary structure

prediction included. It is also possible to browse

from the website all the families or the genomes

(>1100) by species name or specific kingdoms.

Each Rfam family is hand-curated, both in the

alignment and in threshold used for the CM, and

is annotated with multiple useful information, such

as a link to the related Wikipedia page describing the

family and giving literature references. Moreover,

the predicted phylogenetic tree for any alignment,

generated using either a maximum likelihood

approach or neighbour-joining, is displayed along

with the secondary structure. Finally, a dedicated

section shows detailed information about the Rfam
family, such as data curation, model feature and

the CM bit-scores distributions.

Rfam and other structural approaches have been

extensively used for both long and short ncRNA
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Table 1: Databases for non coding RNA research

Database Source Small
RNAs

Long
ncRNAs

Description Availability

RNAdb http://jsm-research.imb.uq.edu.au/rnadb/ Y Y Mammalian ncRNA database W, D
NONCODE http://www.noncode.org/index.htm Y Y Database of ncRNAs from 861 organisms (Eukaryotes, Bacteria, Archea,Viruses) W, D
fRNAdb http://www.ncrna.org/fRNAdb/ Y Y A comprehensive non-coding RNA sequence database, also including data from

RNAdb, NONCODE, Rfam and mirBase
W, D

Rfam http://rfam.sanger.ac.uk/ Y Few collection of structural RNA families W, D
NRED http://jsm-research.imb.uq.edu.au/NRED/ N Y Repository of ncRNA expression information W, D
NATsDB http://natsdb.cbi.pku.edu.cn/ N Y Specific for cis antisense transcripts W, D
Trans-SAMap http://trans.cbi.pku.edu.cn/ N Y Specific for trans antisense transcripts W, D
antiCODE http://bioinfo.ibp.ac.cn/ANTICODE/index.htm N Y Specific for cis and trans antisense transcripts W, D
miRBase http://microrna.sanger.ac.uk/sequences/ Y N Main repository for microRNA data W, D
snoRNABase http://www-snorna.biotoul.fr/index.php Y N Human snoRNAs database W
Plant snoRNA
database

http://bioinf.scri.sari.ac.uk/cgi-bin/plant_snorna/home Y N Plant snoRNAs database W, D

smiRNAdb http://www.mirz.unibas.ch/smiRNAdb/cgi/smiRNAdb Y N Database of miRNA expression information (small RNAs cloned by theTuschl Lab) W, D
microrna.org http://www.microrna.org/microrna/home.do Y N Database of miRNA targets and expression W, D
Argonaute http://www.ma.uni-heidelberg.de/apps/zmf/argonaute/ Y N Database of mammalian miRNAs expression and their known or predicted targets W
Tarbase http://diana.cslab.ece.ntua.gr/tarbase/ Y N Database of experimentally supported miRNA target interactions W, D
MirGator http://genome.ewha.ac.kr/miRGator/miRGator.html Y N Database and navigator tool for functional interpretation of miRNAs W

W¼web-based resource,D¼ downloadable data.
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discovery and annotation, but proved less successful

with longer transcripts (for a more detailed descrip-

tion see also [26, 27]). All these methods rely on the

potential of a ncRNA sequence to fold into a stable

secondary structure, and on the hypothesis that

ncRNA function is mediated by its secondary struc-

ture. However, the formation of a stable secondary

structure alone, evaluated by thermodynamics para-

meters, is generally not sufficient to reliably detect

ncRNAs, as many of them do not appear to adopt

significantly more stable structure than random

RNA sequences [28]. As ncRNAs often conserve a

base-paired secondary structure with low primary

sequence similarity, the combination of secondary

structure prediction with conservation of that struc-

ture in related species has proved successful for the

identification of functional ncRNAs [29–31]. Several

programs (i.e. QRNA, RNAz and Evofold) used

the prediction of conserved secondary structures

for ncRNA identification (Figure 1A). However,

although these methods can work as long noncoding

RNA gene predictors, they actually identify con-

served elements of RNA secondary structure that

can and do occur in mRNAs as well as ncRNAs.

For instance, conserved local secondary structures

are particularly abundant within 5’ and 3’ untrans-

lated regions (UTR) of mRNAs, where regulatory

proteins bind [32]. Therefore, programs based on

secondary structure prediction might lead to signifi-

cant false positive and false negative discoveries.

A further issue for the efficient annotation of second-

ary structure prediction of long ncRNAs is the accu-

rate knowledge of transcript boundaries. Indeed,

if the transcript sequence is incomplete (not full

length), it is very difficult to assign the correct func-

tional annotation to that RNA transcript. The tran-

script length also affects the performance of the

folding program. Finally, important but essentially

unstructured long ncRNAs like Xist and IPW
(Imprinted in Prader–Willi) are not detected by

these methods.

BIOINFORMATICAPPROACHES
FOR LONG ncRNAS
IDENTIFICATIONAND
ANNOTATION
The identification and functional annotation of puta-

tive regulatory long ‘mRNA-like’ ncRNAs is a pri-

mary focus of computational RNA research, but

Figure 1: Schematic representations of bioinformatic strategies for detection and functional annotation of
ncRNAs. Dots and parentheses conventionally represent secondary structure prediction. (A) Secondary structure
approach: consider all conserved phastCons elements and run EvoFold to detect interesting hairpin structures. (B)
CRITICA analysis: consider all transcripts aligned to the genome scaffold and discriminate between coding and
ncRNAs on the basis of predicted ORF size and conservation. (C) Machine learning approach (CONC ): train the soft-
ware with high confidence ncRNA set (i.e. datasets from RNAdb and NONCODE databases) and coding mRNAs and
then feed the classifier with real sequence samples. (D) Predict miRNA precursors from secondary structure
(hairpin), size and conservation. (E) MirDeep approach for miRNA identification from deep-sequencing data: differ-
ential recovery of sequences from the miRNA and its cognate star form, coupled with secondary structure predic-
tion of the hairpin precursor.
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currently available methods to predict ncRNAs on a

genome scale are still immature. The annotation

of large eukaryotic genomes is computationally

expensive, thus limiting the feasibility of approaches

that are otherwise efficient in searching smaller gen-

omes. In addition, genomes of higher eukaryotes are

frequently associated with ncRNA-derived pseudo-

genes and repeats, which make the discrimination

of functional copies from the nonfunctional ones

challenging. To date, in addition to the detection of

conserved secondary structure, long ncRNA discov-

ery and annotation has been based mainly on protein-

coding potential determination, primary sequence

conservation among different species and approaches

which combine the previous information.

Assessment of the protein-coding
potential
As long ncRNAs generally lack discernable features

to facilitate categorization and functional prediction,

the most widely used strategy to annotate a ncRNA

is to exclude that it possesses protein-coding features,

thus discriminating it from mRNA [33, 34].

Typically, the starting data are novel cDNAs or

Expressed Sequence Tags (EST) obtained by high-

throughput experiments (e.g. full-length cDNA

cloning, tiling arrays, deep sequencing data) or

selected known transcripts (again mainly cDNAs

or EST) retrieved from public databases, such as

GenBank, FANTOM, etc. In many cases, these

transcripts are derived from libraries aimed at iso-

lating mRNAs, which preferentially include the

polyadenylated RNA fraction. As a result, non-

polyadenylated transcripts tend to be underrepre-

sented among available cDNA and/or EST

collections.

A number of bioinformatic methods, such

as DIANA-EST [35], ESTScan [36], BlastX [37],

CSTminer [38] and CRITICA [39], have been

applied to estimate the protein-coding potential of

an RNA sequence. The protein-coding potential

is mainly determined on the basis of Open

Reading Frame (ORF) length and/or ORF conser-

vation among different species. Usually, a minimum

ORF cut-off is defined (normally 300 nt, may

be lowered down to 150); below this threshold,

the transcript is considered to be noncoding

(Figure 1B). The different choice of this threshold

has produced divergent estimates of the prevalence

of ncRNAs in mammalian genomes, and in any case

might lead to misannotations. Indeed, long-known

regulatory ncRNAs, such as Xist and H19, contain

by chance sufficiently long putative ORF to be

erroneously annotated as protein-coding, while tran-

scripts encoding short proteins might be incorrectly

classified as ncRNAs [40]. Therefore, an additional

criteria is searching for ORF homology to known

proteins or domains, on the hypothesis that ORFs

lacking cross-species conservation are more likely to

occur randomly. In this way, RNAs with short, non-

conserved ORF are most likely to represent bona fide
ncRNAs. Few of these comparative methods,

including CSTminer and CRITICA, work reasonably

well also for genome-wide analyses.

Recently, two novel algorithms based on support

vector machines (SVM), CONC and Coding Potential
Calculator (CPC), have been used to assess the

coding potential of putative ncRNAs [41, 42]. In

these algorithms, multiple distinct features of

mRNAs are exploited by the machine learning

methods to distinguish the ncRNAs from mRNAs.

For instance, the CONC (for ‘coding or noncoding’)

classifier considered features of native proteins such

as peptide length, homology with known proteins,

amino acid composition, secondary structure, solvent

accessible surface area and sequence compositional

entropy. Liu and colleagues trained this SVM using

eukaryotic ncRNAs from the RNAdb and

NONCODE databases [43, 44] and showed that pro-

tein features can be used to distinguish ncRNAs

from mRNAs with 97% specificity and 98% sensi-

tivity (Figure 1C). All the features contributed to the

high classification accuracy, but the top-performing

individual features were the number of database

homologs and peptide length. The strong contribu-

tion of peptide length was probably a consequence

of the shorter average length of the ncRNAs

(526 nt) compared to the mRNAs (1746 nt).

Instead, the presence of several protein homologs

is clearly a strong support for the protein-coding

potential of any RNA. The major weaknesses

of the homology search were misclassification of

RNAs coding for novel proteins or homology

based hits of ncRNAs to mis-annotated hypothetical

proteins. The inclusion of additional features, such

as alignment entropy and amino acid composition,

seemed to enhance the prediction accuracy.

A second SVM-based approach, named CPC [42]

used fewer features than CONC for training (6 versus

180), but achieved comparable performance in sig-

nificantly less time. A user-friendly web-based inter-

face of CPC is also available (Table 2).
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Table 2: Computational tools for non coding RNA research

Task Tool Source Small
RNAs

Long
RNAs

Availability

Protein coding CST-miner http://t.caspur.it/CSTminer/ N Y W
potential ESTScan2 http://www.ch.embnet.org/software/ESTScan2.html N Y W, D
assessment BlastX ftp://ftp.ncbi.nih.gov/blast/

http://www.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD¼Web&PAGE__TYPE¼BlastHome
N Y W, D

CRITICA http://www.ttaxus.com/software.html N Y D
CONC http://cubic.bioc.columbia.edu/�liu/conc/ N Y D
CPC http://cpc.cbi.pku.edu.cn/ N Y W, D

Generic structural mfold http://mfold.bioinfo.rpi.edu/ Y Y W, D
RNA prediction and RNAfold http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi Y Y W, D
annotation QRNA ftp://selab.janelia.org/pub/software/qrna/ Y Y D

RNAz http://www.tbi.univie.ac.at/�wash/RNAz/ Y Y W, D
Evofold http://www.soe.ucsc.edu/�jsp/EvoFold/ Y Y D
Randfold http://bioinformatics.psb.ugent.be/software/details/Randfold Y Y D
RNAstrand http://www.bioinf.uni-leipzig.de/Software/RNAstrand/ Y Y D

Specific ncRNA MiPred http://www.bioinf.seu.edu.cn/miRNA/ Y N W
classes prediction and MirFinder http://www.bioinformatics.org/mirfinder/ Y N D
annotation MirEval http://tagc.univ-mrs.fr/mireval/ Y N W

mirDeep http://www.mdc-berlin.de/en/research/research_teams/systems_biology_of_gene_regulatory_elements/projects/miRDeep/ Y N D
Snoscan http://lowelab.ucsc.edu/snoscan/ Y N W, D
snoGPS http://lowelab.ucsc.edu/snoGPS/ Y N W, D
snoSeeker http://genelab.zsu.edu.cn/snoseeker/ Y N W, D
snoReport http://www.bioinf.uni-leipzig.de/Software/snoReport Y N D

miRNA target prediction miRanda http://www.microRNA.org/
http://microrna.sanger.ac.uk/(miRBase targets)

Y N W, D

TargetScan http://www.targetscan.org/ Y N W
PicTar http://pictar.bio.nyu.edu/ Y N W
DIANA-microT http://diana.cslab.ece.ntua.gr/microT/ Y N W
RNAhybrid http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/ Y N W, D
mirTarget2 http://mirdb.org/miRDB/ Y N D
miTarget http://cbit.snu.ac.kr/�miTarget/ Y N W
PITA http://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.html Y N W, D
microTar http://tiger.dbs.nus.edu.sg/microtar/ Y N D

snoRNA target prediction snoTarget http://hsc.utoledo.edu/depts/bioinfo/snotarget.html Y N W, D

W¼web-based resource,D¼ downloadable software or data.
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In conclusion, by combining multiple discrimi-

nating features, SVM methods seem to outperform

previous approaches and currently represent the

forefront of protein-coding potential calculators.

One of the main problems for accurate protein-

coding potential determination, independently from

the specific method used, is the completeness of

the input sequences. Indeed, reliable classification

of novel transcripts into mRNAs or ncRNAs cru-

cially depends on the full-length status of the input

sequences. Several experimental variables, such as

incomplete reverse transcription, internal priming

of pre-mRNAs and genomic DNA contamination,

can all result in the generation of spurious or truncate

transcripts, many of which are likely to masquerade

as ncRNAs.

It should also be noted that methods that assess

the protein-coding potential of a transcript are based

on the assumption that an RNA can be unequivo-

cally annotated as protein-coding or noncoding,

while in several cases RNAs might be bifunctional,

that is they can be translated into proteins but also

work independently as regulatory RNAs [40].

Therefore, these methods are very useful for selec-

tion of a stringent dataset of ncRNAs while perform-

ing genome-wide scans; however, when it comes

to the functional characterization of single transcripts,

the presence of an ORF should not exclude a priori
the existence of additional regulatory functions at the

RNA level, and vice versa.

Annotation based on primary sequence
conservation and genomic context
While many small RNAs are evolutionary conserved

(e.g. miRNAs, snoRNAs), long ncRNA genes are

difficult to identify based on comparative primary

sequence analysis with known regulatory RNAs,

due to their sequence divergence across phyla. In

fact, known functional ncRNAs (such as Xist or

Air) are on the whole poorly conserved and display

< 70% identity between mouse and human, similar

to the level of conservation observed with introns.

However, they often retain stretches of higher con-

servation within their overall sequence, suggesting

the presence of functional domains necessary for

the interaction with their molecular targets [45].

Despite the poor conservation of the primary

sequence, it has been noted that some ncRNAs

tend to maintain genomic equivalent position in dif-

ferent species [46], or conserve their genomic orga-

nization, as in the case of Xist in mammals [13]. In

other words, the site of transcription is conserved

between human and mouse genomes, even if the

nucleotide sequence is not. Hence, at least in some

cases, it might be possible to identify positional

equivalents of ncRNAs by comparative genomics

approaches.

Several approaches are based on the fact that long

ncRNAs often originate from complex transcrip-

tional loci, in which the ncRNAs are coordinately

transcribed with their associated protein-coding tran-

scripts. Therefore, it is possible to predict on a

genome scale the localization and putative func-

tional roles of ncRNAs on the basis of their genomic

context and their relationships with neighbouring

protein-coding genes. In this way, computational

pipelines have been developed to detect specific

ncRNA families, such as intronic ncRNAs, bidirec-

tional transcripts and cis- and trans-antisense tran-

scripts [46–49].

BIOINFORMATICAPPROACHES
FOR SMALL ncRNA STUDY
Several distinct classes of small ncRNAs (<200 nt)

play important regulatory roles in diverse cellular

processes (for an overview, see [6]). The wider

group of small RNAs, which include miRNAs,

siRNAs and piRNAs, interacts with members of

the Argonaute/Piwi (Ago/Piwi) protein family

to form ribonucleoprotein complexes that silence

gene expression either at the transcriptional or

post-transcriptional level. Different classes of small

RNAs bind to distinct Ago/Piwi family members

and have distinguishing features, such as length, pre-

cursor structure and mechanism of biogenesis.

However, in all cases, small RNAs guide the

sequence-specific recognition of target nucleic acids

by hybridizing to perfect, or nearly perfect, comple-

mentary sites [7].

miRNAs are the most abundant class of Ago/Piwi

interacting small RNAs, and therefore the majority

of computational methods developed for small

ncRNA research is focused on the genome-wide

prediction of miRNAs and their targets. Moreover,

miRNA prediction has been facilitated by the fact

that their precursors possess a definite length and sec-

ondary structure. Many of the mature miRNAs

appear to be highly conserved across species and

originate by a two-step endonucleolytic process

(Figure 2) starting from long primary transcripts

(pri-miRNA) that contain extensive regions of
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stem-loop structures. These stem-loops are excised

by the RNaseIII enzyme Drosha in the nucleus to

produce a �70 nt hairpin precursor (pre-miRNA),

which is then exported to the cytoplasm where it is

further processed by Dicer to the mature miRNA

[7]. During miRNA biogenesis, only miRNA

derived from one strand of the RNA duplex is pre-

ferentially selected for entry into a silencing com-

plex. The other strand, known as the miRNA*,

has typically been assumed to be a carrier strand,

but recent evidence demonstrated that, at least in

D. melanogaster, miRNA* are often present at physi-

ologically relevant levels and can associate with

Argonaute proteins [50]. Once loaded into the silen-

cing complex, miRNAs recognize and bind with a

complex interaction or with perfect complementar-

ity sequences within the 30UTR or coding regions of

their target mRNAs, blocking translation and/or

inducing mRNA degradation [7].

Apart from Ago/Piwi interacting small RNAs,

another large class of short regulatory RNAs is repre-

sented by snoRNAs, which direct the site-specific

modification (2’-O-methylation and pseudouridyla-

tion) of ribosomal RNAs and other RNAs, and

appear to be also involved in alternative splicing reg-

ulation [6, 51]. SnoRNAs recognize target sequences

by formation of a guide RNA duplex and recruit

associated proteins that catalyze the corresponding

modification at the target site. Generally, snoRNAs

range between 60–300 nt in length, but only

short sequences participate in target recognition via

antisense interactions. The two main classes of

snoRNAs, called C/D box and H/ACA box, possess

distinct sequence and structural motifs that can be

used for computational prediction.

Finally, it should be stressed that the discovery

of novel classes of small ncRNAs is progressing inces-

santly. For instance, whole-genome tiling arrays

have identified short transcripts (20–200 nt), which

preferentially map at the transcription starting

sites (promoter-associated short RNAs, PASRs)

or at the transcription termination site (termini-

associated short RNAs, TASRs) of about half of

the known protein-coding genes [20]. In addition,

several independent classes of small RNAs were

recently identified from cDNA libraries made from

size-fractionated (20–40 nt) RNA [52]. Currently

there are no established rules for the annotation of

these RNAs. Moreover, it is likely that many small

RNA classes still remain to be discovered, because

some methods, such as CAGE (Cap-analysis of

Gene Expression), PETs (Paired-End diTags), and

full-length cDNAs, identify only capped RNAs,

while tiling arrays exclude repeat elements [2].

Also, possible 50 and 30 chemical modification of

small RNAs are a major issue for the cloning

and discovery of novel families with currently used

protocols. We expect that rapid advance in massively

parallel sequencing technology will facilitate discov-

ery of many novel classes of small RNAs, especially

with concomitant advances in RNA purification

methods, which would allow separation of modified

RNA as well as depletion of major classes of known

structural RNAs, such as tRNAs and short rRNAs.

We briefly review in the following sections the

most common bioinformatic approaches for miRNA

and snoRNA identification and target prediction.

Small RNA prediction
There are two mainstream directions for identifica-

tion of new small ncRNA sequences: ab initio predic-

tion methods and reverse strategies based on the

inference of reliable candidate sequences starting

from experimental data, usually deep sequencing of

small RNA libraries.

A first challenge which faces the researcher inter-

ested in ab initio miRNA prediction is that the hairpin

structure which is typical of the pre-miRNA precur-

sor (Figure 2) is frequently found in the genome.

However, the majority of the miRNA sequences

clearly exhibit a folding free energy that is

Figure 2: miRNA biogenesis and functions. Schematic
representation of miRNA biogenesis in a eukaryotic
cell. Pri-miRNA: miRNA primary transcript; Pre-
miRNA: hairpin precursor miRNA; miRISC: miRNA
induced silencing complex.
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considerably lower than randomly shuffled

sequences, indicating a high tendency towards a

stable secondary structure [53]. The program

RandFold (Figure 1D) is a downloadable software

for ncRNA secondary structure prediction which

could be included in a miRNA ab initio identification

pipeline. An alternative approach, MiPred, uses a

novel machine-learning technique to identify puta-

tive miRNA precursors and seem to provide ele-

vated sensitivity and specificity [54]. However this

method cannot scale up to the analysis of multiple

sequences, so it is suitable only to work with a single

putative miRNA precursor at a time. Recently, a

large-scale clustering method was developed that

allowed to determine the specific topological features

of miRNA precursors and use them as a miRNA

prediction tool, which can be used to screen thou-

sands of putative stem-loop structures at a time [55].

In addition, this method has been implemented in a

user-friendly online tool called MirEval that enables

researchers with limited bioinformatics skills to con-

duct a thorough analysis of an input sequence for

novel miRNAs [56]. The software MiRFinder [57],

which can be freely downloaded, starts from pairwise

genome comparison data and uses SVM to predict

with good sensitivity and sensibility miRNA hairpin

precursors from the raw genomic sequence. Finally,

the frequent clustering of miRNA sequences in

the genome has been successfully used as criteria

for the detection of novel miRNAs in proximity

of known ones, although the software is not down-

loadable [58].

Unlike miRNAs, both C/D box and

H/ACA box snoRNAs, which direct two distinct

types of chemical modifications of the target RNA

molecules, have proved to be surprisingly difficult

to find in genomic sequences. The first snoRNA-

searching programs, namely SNOSCAN and

snoGPS [59, 60], were essentially based on detecting

guide snoRNAs, which target rRNAs or snRNAs.

Recently, two different methods have been devel-

oped to look for all kind of snoRNAs, including

‘orphan’ snoRNAs, on a genome scale: snoSeeker
[61] and snoReport [62]. snoSeeker is composed of

two distinct programs, ACAseeker and CDseeker, and

was designed to screen whole genomic alignments

for putative snoRNA candidates as well as search for

putative target sites. It is based on homology infor-

mation and on the use of a number of probabilistic

models to assess box elements, terminal stem pairing

and complementary regions. Instead, snoReport used a

combination of RNA secondary structure prediction

and machine learning approaches to detect both C/

D and H/ACA box snoRNAs, independently of the

presence of alignment/homology information.

Small RNA discovery and annotation
from deep-sequencing data
Massively parallel sequencing technologies have

proved very promising for new small RNAs discov-

ery, as demonstrated by recent landmark papers par-

ticularly focusing on miRNAs [63–65].

The correct identification of putative new

miRNAs in the sea of small transcripts derived

by one of such experiments, however, is a complex

and almost ‘artistic’ procedure composed of many

steps. Briefly, it requires careful primer and carrier

removal, high stringency mapping of the mature

miRNA to the genome (allowing for 3’ editing),

retrieval of the genome sequence corresponding to

a putative pre-miRNA, secondary structure predic-

tion of the putative precursor and filtering of

other known ncRNAs (i.e. fragments of tRNAs or

rRNAs, snoRNAs, piRNAs etc.). The sequences

remaining after this ‘cleaning’ step are then clustered

with known miRNAs. Clustering—with known

miRNAs or only with novel sequences—is an addi-

tional evidence for a reliable new miRNA sequence,

since about half of all miRNAs are clustered. All

mapped reads are also related with existing genome

annotation and are divided in intronic/exonic and

conserved/nonconserved according to the overlap

with phastCons conservation score. Finally, compar-

ison with the two major miRNA databases (miRBase
and smiRNAdb), allowing again for 3’ editing, results

in a reliable classification of the sequences in known,

conserved and putative novel miRNAs. A general

bioinformatic pipeline for the identification of new

miRNA sequences from deep-sequencing data is

illustrated in Figure 3.

An interesting ‘probabilistic’ approach to the

identification of novel miRNA sequences from

deep-sequencing data, freely downloadable, is

miRDeep (Figure 1E). It is based on the differential

count of reads deriving from the miRNA, the

miRNA* or the loop parts of the precursors,

together with the usual precursor secondary structure

prediction, and has shown robustness in experimen-

tal validation [66]. It is also worth to mention the

approach recently used by Lu and colleagues [67]

to identify miRNAs from deep-sequencing data

of Drosophila small RNA libraries: after a filtering
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step of all reads matching known RNAs other

than miRNAs (i.e. rRNAs, tRNAs, snoRNAs),

the remaining reads and flanking sequences were

subjected to secondary structure prediction com-

bined with either of the three different parameter

sets of increasing structural stringency to define puta-

tive hairpin precursors.

Small RNA target identification
An important step for the functional annotation of

a small RNA is the identification of its physiological

targets and ultimately the elucidation of entire bio-

logical pathways controlled by each small RNA.

Most small RNAs contain sequence elements

which are complementary to specific sites within

their target RNAs. For instance, plant miRNAs

hybridize to perfectly complementary target

sequences within the coding sequence or 3’UTR

of target mRNAs, while animal miRNAs require

nearly perfect complementarity as well as a complex

series of physical interactions and energetic con-

straints. In addition, the interaction of the miRNA

with its functional targets is dependent on the

local secondary structures of the target 3’UTR.

Many computational methods have been devel-

oped to predict miRNA targets [68] and are listed

in Table 2. The basic target prediction is based

on sequence complementarity and/or on favorable

miRNA-target duplex thermodynamics. Additional

criteria vary widely, but generally include (i) strong

Watson-Crick base-pairing of the 5’ seed of the

miRNA (nt positions 2-8) to a complementary site

in the 3’UTR of the mRNA; (ii) conservation of

the miRNA binding site; and/or (iii) structural

accessibility of the target. Although all these features

are known to be important for effective miRNA-

target interaction, the relative importance of each

feature and how they contribute to function

remains uncertain. Moreover, it is likely that other

important parameters for functional miRNA-target

interactions remain to be identified. For instance,

binding cooperativity is currently an underestimated

factor in most target prediction algorithms, but it

would be increasingly important for improving the

accuracy and efficiency of predictions. Moreover,

target prediction of animal miRNAs should prob-

ably not be confined to 3’UTRs, as targeting of

coding regions has been recently demonstrated in

at least two different mammalian systems [69, 70].

Two of the most recent miRNA target predic-

tors, MicroTar [71] and PITA [72], do not rely on

evolutionary conservation of the binding site but

do achieve a very good performance in specificity

and sensitivity. This is particularly interesting in

the case of tissue-specific miRNAs, which usually

do not show conservation of the binding site.

MicroTar calculates predicted free energies of

unbound mRNA and putative mRNA-miRNA

heterodimers, implicitly addressing the accessibility of

the mRNA 3’UTR, while PITA uses a parameter-

free model that computes the difference between the

free energy gained from the formation of the

miRNA-target duplex and the energetic cost of

unpairing the target to make it accessible to the

miRNA. PITA also takes into account the binding

Figure 3: Schematic description of a bioinformatic
pipeline for ab initio identification of novel miRNAs
from deep-sequencing data.
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cooperativity and calculates a ‘target score’ for each

miRNA, representing the combined effect of all pre-

dicted sites for that miRNA on the given UTR.

Both programs can be downloaded and PITA is

also available for single-query searches from a web-

site, which includes a convenient target database for

known miRNAs (Table 2).

As each miRNA has hundreds of putative mRNA

targets, a promising computational field is the func-

tional annotation of target genes of differentially

expressed miRNAs. This could be achieved with

tools and strategies similar to those employed for

microarray analysis, or even with methods as simple

as contingency analysis applied to gene ontology

functional categories for detecting target gene

enrichment [73]. Alternatively, an integrated website

for functional annotation and profiling of known

miRNA sequences is miRGator [74]. MiRNA func-

tion is inferred from the list of target genes predicted

by a series of software, and statistical enrichment

test of target genes in each term is performed for

gene ontology, pathway and disease associations.

SnoRNAs target other RNAs for chemical mod-

ification through short stretches of sequence comple-

mentarity, which are located in definite positions

of the snoRNA sequence [75]. Although snoRNAs

predominantly target ribosomal RNAs and spliceo-

somal RNAs, the discovery of ‘orphan’ snoRNAs,

which either have no known target or which target

ordinary protein-coding mRNAs, suggests that

they might play a diverse set of regulatory functions.

For instance, a search with a recently developed

computational web resource, snoTARGET, for possi-

ble guiding sites for orphan snoRNAs among

the entire set of human and rodent exonic and intro-

nic sequences, identified putative targets of HBII-

85 C/D box snoRNAs within mRNAs, preferen-

tially located in alternatively spliced exons [76].

DATABASESANDBIOINFORMATIC
TOOLS FOR ncRNA ANNOTATION
Until recently, the non-protein coding portion of

the genome was largely ignored by the public

genome annotation repositories, mainly because

these RNAs were considered as transcriptional

noise. Consequently, genome-wide annotation of

long ncRNAs in the most widely used genome

browsers (i.e. UCSC genome browser or

ENSEMBL) is present but still incomplete, and the

information is not always easy to access. To

overcome these limitations, and to complement the

information present in the genome browsers, several

databases specialized in the annotation of the non-

protein coding portion of the transcriptome have

been recently developed (Table 1):

(1) RNAdb collects data from different sources,

including high confidence curated ncRNAs

from literature and FANTOM3 ncRNA set,

as well as computationally predicted conserved

RNA structures [43]. This database can be quer-

ied in various ways: users can simply browse

the collection or perform specific searches using

keywords as well as by applying filters across

nominated fields (i.e. species, disease-association,

known or unknown function of the transcript).

BLAST searches allow users to locate regions

of similarity between sequences of interest and

those stored in the database. NcRNA sets can

be downloaded from RNAdb either as FASTA

or XML files, for local viewing and data mining.

In addition, entire datasets or search results can

be returned as a custom track (BED file) to be

directly loaded into the UCSC genome browser.

(2) NONCODE is a database of a wide variety

of ncRNA classes (small and long ncRNAs)

from 861 organisms covering all kingdoms

of life (eukaryotes, eubacteria, archea and viruses)

[44]. Data derive from three sources: (a) manual

extracts from literature, (b) automatically filtered

and manually confirmed Genbank sequences,

and (c) experimental data from Chen’s labora-

tory. The database can be browsed by species

or ncRNA class, or searched using specific key-

words. BLAST searches as well as a test version

of UCSC Genome Browser for NONCODE
are also available. The entire database can be

downloaded as FASTA files for local viewing

and data mining.

(3) Noncoding RNA Expression Database (NRED)

is a brand new public repository of ncRNA

expression, based on experimental results from

various microarray and in situ hybridization plat-

forms, including thousands of long ncRNAs

in human and mouse [77]. The database can be

queried by applying filters across nominated fields

to select expression results based on probe char-

acteristics and/or the values of the expression data.

For instance, a user might extract a set of candidate

ncRNAs which are significantly expressed in a

tissue of interest. Search results can be viewed
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online or downloaded as a table or a UCSC

custom track. Results tables can be highly custo-

mized by including several information on the

probe characteristics, genomic context of the

target, sequence conservation and secondary

structure prediction obtained by RNAz.

(4) The functional RNA Database 3.0 (fRNAdb) is

a recent and a very interesting addition to the

growing list of sequence-based comprehensive

ncRNA databases [78]. Its main strength points

are a vast and deeply annotated dataset (510075

entries in the current release) and a very neat

interface with a local mirror of the UCSC

Genome Browser. This is very useful in order

to place a given ncRNA in its correct genomic

context.

(5) Three specialized databases collect cis- and trans-
natural antisense transcript predictions in sev-

eral eukaryotic species: NATsDB, Trans-SAMap
and antiCODE [49, 79, 80]. In this case, the

focus is on the possible regulatory mechanism

through which RNAs might act (i.e. sense–

antisense base pairing), independently from the

RNA coding potential. Therefore, these data-

bases include both protein-coding and noncod-

ing antisense transcript, and sense-antisense pairs

are classified into three groups: coding-coding,

coding-noncoding and noncoding-noncoding.

The databases can be browsed according to

species, overlapping pattern, coding potential

and chromosome location, or searched using

keywords; antiCODE also permits BLAST

searches. Original datasets can be downloaded

for local viewing and data mining.

(6) Known and cloned miRNA and snoRNA

sequences are available not only from the

above mentioned general ncRNA databases

(Rfam, RNAdb, NONCODE, fRNAdb), but

also from dedicated repositories (miRBase,
snoRNABase, Plant snoRNA database) and

genome annotation databases (NCBI, UCSC,

etc.). In particular, MiRbase [81] is the central

repository of mature miRNA sequences

and related hairpins, and is well known in the

miRNA research community. miRBase also

includes the MicroCosm web resource,

for searching computationally predicted

miRNA targets across many species. Likewise,

snoRNABase [82] and the Plant snoRNA database
are dedicated databases containing sequences

of C/D box and H/ACA box snoRNAs as

well as their target sites on ribosomal and spli-

ceosomal RNAs.

Recently, additional resources for the functional

annotation of miRNAs have become available, due

to the public release of high-throughput miRNA

expression data, thus facilitating the use of informa-

tion by biologists or bioinformaticians. Notable

applications allow the user to associate expression

profiles (in one or more tissues) of a subset of user-

defined miRNAs to other information such as

genome locations, host genes, predicted or validated

target mRNAs. We briefly describe the principal

features of few noteworthy databases:

(1) SmiRNAdb collects miRNA sequences and

expression profile data obtained from cloning

experiments by the Tuschl Lab, through a com-

plex computational pipeline [83]. The database

allows the search and visualization of the expres-

sion profiles of user-defined miRNAs in selected

tissues. Results can be downloaded as a picture

(pdf file) of the obtained heat map.

(2) MiRNA expression profiles are also available

at the site www.microRNA.org [84], a resource

which features attractive visualization either by

heat maps or bar graphs, together with informa-

tion about miRNA targets as predicted by the

software miRanda.
(3) Argonaute allows the user to browse or search

miRNAs on several criteria, including expression

and association to human diseases [85].

Moreover, it provides links to published litera-

ture where information about miRNA expres-

sion data can be retrieved and compared with

de novo generated profiles.

(4) Tarbase [86], a database of validated miRNA-

mRNA interactions, includes the description

of the validation method, the functional conse-

quence of the interaction (cleavage or repression)

and the source of information.

Concerning other small RNA classes, piRNA

sequences can be retrieved from general ncRNA

repositories, such as RNAdb and NONCODE,

whereas short ncRNAs (e.g. PASR, TASR) derived

from Affimetrix tiling array [20] are available as spe-

cific tracks and tables on the hg18 UCSC Genome

Browser.
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CONCLUSIONSAND
PERSPECTIVES
Although the number and type of resources for

ncRNA research are rapidly increasing and becom-

ing more effective, there is currently no tool that

allows the reliable annotation of all kinds of

RNAs. On the bright side, however, many compu-

tational strategies are complementary, and it is usu-

ally possible and suitable to combine a set of methods

to obtain reliable predictions.

Typically, the choice among different methods

is also dependent on the explicit research aim. For

instance, several specific tools are available for the

study of known ncRNA classes, such as miRNAs

or snoRNAs, and they are often preferable to general

approaches, in order to maximize the speed and

the sensitivity of the analysis. However, since it is

likely that many unknown ncRNA families are

still to be discovered, more general methods for

searching ncRNAs are also desirable. In this case,

several methods incorporating evolutionary models

have recently achieved promising results.

Currently, small RNA research is more advanced

than the study of long ncRNAs, thanks to the

increasing number of biochemical studies elucidating

the mechanisms of their function, and to novel deep-

sequencing techniques, which have proved extre-

mely useful for the analysis of this portion of the

transcriptome. Nonetheless, we have only explored

the tip of the iceberg: up to now, we have mainly

looked at the most conserved and abundantly

expressed small RNAs, while recent evidence sug-

gests that many more are expressed in a tissue-spe-

cific manner and at a very low level. Therefore, the

next computational challenge will be the reliable

identification of novel small RNA candidates with

low false positive rate and high sensitivity. Further

progress is also important in the field of target recog-

nition, as the general principles so far governing

miRNA target recognition and mode of action are

being progressively challenged by genetic and bio-

chemical studies [87].

Finally, an increasingly important field in the

bioinformatics of small RNAs is the integration of

mRNA and miRNA expression data in order to

understand the molecular networks in which each

miRNA is involved.

In conclusion, ncRNA research is still at its

infancy, as our knowledge about the diverse and

complex ncRNA world is far from complete.

Novel insights and speculations on this world may

help us not only to increase our limited knowledge,

but also to improve computational tools for further

discoveries. At this stage, resources that are able to

integrate different kind of data and information,

either from in silico or experimental analyses, will

become increasingly useful.
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